Aprendizado de máquina na previsão de surtos de síndrome respiratória aguda grave

Conteúdo do artigo principal

Amauri Duarte da Silva
Marcelo Ferreira da Costa Gomes
Tatiana Schäffer Gregianini
Letícia Garay Martins
Ana Beatriz Gorini da Veiga

Resumo:

Surtos de síndrome respiratória aguda grave (SRAG) ocorrem anualmente, com picos sazonais variando entre regiões geográficas. A notificação dos casos é importante para preparar as redes de atenção à saúde para o atendimento e internação dos pacientes. Portanto, os gestores de saúde precisam ter ferramentas adequadas de planejamento de recursos para as temporadas de SRAG. Este estudo tem como objetivo prever surtos de SRAG com base em modelos gerados com aprendizado de máquina usando dados de internação por SRAG. Foram incluídos dados sobre casos de hospitalização por SRAG no Brasil de 2013 a 2020, excluindo os casos causados pela COVID-19. Estes dados foram preparados para alimentar uma rede neural configurada para gerar modelos preditivos para séries temporais. A rede neural foi implementada com uma ferramenta de pipeline. Os modelos foram gerados para as cinco regiões brasileiras e validados para diferentes anos de surtos de SRAG. Com o uso de redes neurais, foi possível gerar modelos preditivos para picos de SRAG, volume de casos por temporada e para o início do período pré-epidêmico, com boa correlação de incidência semanal (R2 = 0,97; IC95%: 0,95-0,98, para a temporada de 2019 na Região Sudeste). Os modelos preditivos obtiveram uma boa previsão do volume de casos notificados de SRAG; dessa forma, foram observados 9.936 casos em 2019 na Região Sul, e a previsão feita pelos modelos mostrou uma mediana de 9.405 (IC95%: 9.105-9.738). A identificação do período de ocorrência de um surto de SRAG é possível por meio de modelos preditivos gerados com o uso de redes neurais e algoritmos que aplicam séries temporais.

Detalhes do artigo

Palavras-chave:
Síndrome Respiratória Aguda Grave; Aprendizado de Máquina; Modelos Computacionais; Vigilância Epidemiológica; Redes Neurais (Computação)